Keyword Searches in a Geospatial Data Library (with Video)


This is the 3rd post on building a geospatial data library. Other posts on this topic:

1. Structured Searches in a Geospatial Data Library (with Video)
2. Keyword Searches in a Geospatial Data Library (with Video)

In this video I showcase the keyword search functions of the Geospatial Data Library. As with structured searches keyword searches are extremely fast because we are loading a verbose text string with all the pertinent information directly into memory. We can search using the name of the geographic feature, geography, sources, dates, and other discriminators.

In future posts I will be building a MS Access database to support the loading and discovery of geospatial data.

Advertisements

Structured Searches in a Geospatial Data Library (with Video)

This is the 2nd post on building a geospatial data library. Other posts on this topic:

1. Structured Searches in a Geospatial Data Library (with Video)
2. Keyword Searches in a Geospatial Data Library (with Video)

So to recap…

We run into problems when we try to implement any naming conventions on source data:

  • More than likely you will run into system imposed limits on the length of the name. For example SDE Feature Classes in ORACLE can be no longer than 38 characters including the instance name.
  • Usually, source names are not user friendly and trying to find a particular one from a list of 800 or more can test anyones patience especially if you are not a GIS professional.
  • Once a source has been named it is very difficult to rename. Customers will quickly link applications and maps thus modifying a source name become a destabilizing event.

The solution to these issues is to implement standards in a look-up table rather than directly on the source data. In principal, such a system would consist of a parent table containing source information (SDE, services, layers, shapes, covers, etc…) and a daughter table containing your classification schema. A graphical user interface would then provide users with access to the information in the daughter table while a backend uses the parent table to retrieve the data.

The image below is of a geospatial data library my unit implemented at SFWMD. The system was written in C# as an extension to ArcMap. In the video the structured searches are occuring through the daughter table.